Ewing Y., Ludwig W. Y., Ewing M., Eiffreim S. W. Structure of the Scotia Sea and Falkland plateau // J. Geophys. Res. - 1971. - Vol. 76, N 29. - P.7118-7137.

General bathimetric Chart of the oceans (GEBCO), 1984.
Heezen B, C., Johnson G. L. The South Sandwich trench // Deep-Sea. Res. - 1965. - Vol. 12, N 2. - P.185-197.

Lonardi A., Ewing M. Bathymetry of the continental margin. Argentine basin and other related provinces // Physics Chemistry of the Earth. - 1971. - Vol. 8. - P. 79-122.

Vanney I. R., Dangeard L., JohnsonG.L. Contibution a letude des fonds de la mer de la Scotia et de ses abords // Reevue de Geographie physigue et de Geologie gynamigue. 1972. - Vol. XIV. Fas. 5. - P. 465-484.

## Е.В.Хомутов (ВНИРО)

## МЕТЕОРОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА РАЙОНА ЮГО-ЗАІІАДНОЙ АТЛАНТИКИ

## Воздушные массы

Для описания воздушннх масс примем их классиф̆икации, разработаннуь Тальярдом (Метеорология..., I976). В основе данной классификации лежат физические свойства поверхности вместе с известной средней циркуляцией в никних слолх атмосферы, то есть использование распределения суши, океана и льда и, что очень важно для Кжного полушария с преобладанием водной поверхности, распределения температуры водн.

Учет этих ф̆изических свойств ведет к следуощей классиф̆икации воздушшнх масс района 103A:

морская тропическая воздушная масса;
морская полярная воздушная масса;
морская антарктическая воздушная масса.
Изменение температуры воды поперек субтропической конвергенции (средняя широта около $40^{\circ}$ ю.س.) говорит в пользу той точки зрения, что именно эту физическую особенность (конвергенцию) сле-

дует внбрать в качестве границы между районами формирования морскои тропической и морской полярно这 воздушных масс.

Расдоложение атмосферного полярного Фронта показнвает, что резкое падение температуры на поверхности воды проявляөтся до верхних слоев атмосфери, хотя и с некоторым смещением к вгу, как это и должно бить в случае наклонной фронтальной поверхности (Метеорология... . I976).

Так как сезонные изменения в положении зоны Субтропической конвергенции незначительны, то положение границџ между тропической и полярной воздушными массами можно считать постоянным для всех сезонов года. Здесь можно отметить, что некоторне авторн морскую полярную воздушную массу разделяют на два подтиша:

морская полярная воздушная масса с неоднородной теплой Фазой, расположенная между Субтропической и Антарктической конвергенциямит;

морская полярная воздушная масса с однородной холодной фазои, расположенная к погу от Антарктической конвергенции вплоть до кромки льда.

Деление морскои полярной воздушной массн на нодтипы нужно признать целесообразннм, так как при классификапии воздушных масс учитывалось распределение температурн воды. Здесь мы не будем останавливаться на анализе стратификаций атмосферы, присуцих тому или иному подтипам воздушных масс; отметим только, что повторяемость некоторнх консервативннх свойств воздуха (таких, например, как потенциальная температура смоченного термометра) является, вөроятно, самнм объективным индикатором для установления наличия той или иной воздушной массн.

Так как в период весны-лета Пжного полушария кромка льда сдвигается к югу и становится близкой к побережыо Антарктидн,морская полярная воздушная масса с однородно甘 холодной фазой в период перехода от веснн к лету расширяется и в летнии сезон замещает морскую антарктическую воздушную массу, то есть становится пограничной с континентальной воздушной массой.

## Атмосферная циркуляция и циклоническая деятельность

Поле атмосферннх переносов в Южной Атлантике определяется взаимодействием и взаимным расположением квазистационарннх клима24

тических баричөских образованиии: Атлантического и Тихоокөанского гжннх субтропичөских антициклонов; барических дөпрөссии, образующихся над акваториями морей Уэдделла, Беллинсгаузена,Рисөр-Ларсена; Антарктического континентального антициклона, а также зоны актив-
 над Іжкной Америкой в летнее время циклонов. Однако неооходимо отметить, что преобладаощее влияние на циргулящио атмосберы над 1ожной Атлантикой оказывают нонтинентальный Антарктический, вжный Атлантический антициклонн и зона активного пиклогөнеза. Существует взаимодействие между активностью субтропических максимумов и полярного антициклона. Большое значение в механизме воздухообмена имеют грөбни Антарктического антициклона, возникаощие в тыловых частях стационарных депрессий при мощных вторжениях антарктических воздушных масс на север. Полярный антициклон через свои меридионально вытянутне гребни в нижнен тропосфере служит постоянным источником питания для субтропических максимумов. На уровнях 700 п 500 мб располагаотся депрессии, кольцом окружаощие Антарктический антициклон. Среди них выделяется своей устойчивостью циклон над морем Уэдделла. Нередко на средних картах наблодается гребень высокого давления, располагающийся между циклонами над морями Уэдделла п Росса. Характер взаимодействия этих зон определил следуощие тишы атмосферной циркуляции, присущие району Пожной Атлантики (Атлас..., I974):
I. Зональная с циклонической деятельностью в высоких щиротах.
2. Зональная с циклонической деятельностью в умеренных широтах.
3. Меридиональная с выходом циклонов из низких широт в высокие в центральной части океана.
4. Меридиональная с активной циклонической деятельностьы в умеренннх широтах.
5. Меридиональная с блокируюиим гребнем в западной части океана.
6. Меридиональная с блокируопим гребнем в центральной части океана.
7. Меридиональная с активной циюлонической деятельностью B районе о. Тристан-да-Кунья.
8. Меридиональная с активной циклонической деятельностьо на западе и востоке онеана в субтропической зоне.

В среднемноголетнем поле зональннх переносов (по данным АтлантНИРО) заметно ввделяется внтянутая вдоль параллели область поввшенной интенсивности, ось которой проходит в восточной части Ммной Атлантики, приблизительно по $50^{\circ}$ ю.ш., а в западной части по $55^{\circ}$ 10.ㅍ. (рис. I, a).


Рис. I. Среднегодовые многолетние карты индексов приземных воздушних переносов:
а - зональннх; б - меридиональннх
В среднемноголетнем поле меридиональннх переносов ввделяетоя обширная область преобладакцих переносов на мг, располагамщаяся над центральной часты акватории Кхжнои Атлантики, и две области переносов на север в западной и восточной частях океана (ом. рис. I, ठ).

После анализа синоптического материала, полученного в четнpex peйсах PIMC "Возрождение" в район 103А, можно сказать, что за рассматриваемнй период преобладали четвертий, пятый и шестой типн атмосферной циркуляции, однако процентное соотношение медду ними менялось в зависимости от сезона. Это связано с тем, что наблодартся сезонные изменения в положении центров действия стационарных барических образований. Так например, в летнии сезон центр действия Атлантического ржного антициклона смещаетоя к ргу, наблодаетоя развитие гребней высокого давления, которне нередко достигарт $60-65^{\circ}$ р.ш., что приводит к преобладанив пятого типа атмосферной пиркуляции. В зимний сезон картина наблодается обратная: Атлантический антициклон смещается к северу, развивартся гребни внсокого 26

давления, связаннне с Антарктическим континентальным антициклоном; в этом случае прөобладает шестои тип циркуляции.

Теперь рассмотрим циклоническую деятөльность, характернуо для раћона 1ого-Западной Атлантики, при этом будем коротко описнвать те погоднне условия, которне наблодаются при той или иной системе циклонов. Погода в районе 103А обусловливается взаимодействием Атлантического ржного субтропического антициилона, зонои активной циклонической деятельности пжнее $40^{\circ}$ ю.ш. и Антарктического континентального антициклона. Циклоническуо деятельность в данном районе можно разделить на четвре основннх типа:

I - образование диклонов вследствие волновых процессов во Фронтальной зоне;

2 - образование термических депрессий над материком 10хной Америки, которне в некоторых случанх развивались в самостоятельнне циглонн;

3 - выход тихоокеанских циклонов через пролив Дрейка в Іажную Атлантику;

4 - выход циклонов из низких широт в высокие.
Рассмотрим ІІ өвнй ти и. В среднем по 1ожному полушарию зона атмосферного полярного фронта проходит по $60^{\circ}$ 10. I. (однако нужно оговориться, что положение атмосферного полярного Фронта подвержено сезонным изменениям; так, в летний период он располагается севернее, чем зимои). Волновне процессн, характернне для фронтальннх зон, вытянутых в щиротном направлении, приводят к усиленио циклогөнеза. Активизация циклонической деятельности во Фронтальной зоне ярко выражена в весенний и осенний (переходнне) периодн. Как правило, эти цинлонн не являюотся глубокими барическими образованиями, имеют высокие скорости перемещения и непродолжительнне периоды "жизни". पасто они разрушаются, не достигнув стадии окклюдирования. В начальный период существования этих циклонов в направлении их перемещения преобладает се-веро-восточная составляющая, ноторая в процессе развития циклона меняется на юго-восточную. Редкие из них опускаются пжнее 65 $70^{\circ}$ ю.ш. Для этого типа циюлонической делтельности характерна неустойчивая погода, с порнвистыми ветрами, часто меняющими свое направление. Нередки осадки в' виде дождя или снега в зависимости от времени года. На рис. 2 приведена характерная для этого типа синоптическая ситуация. Как пример приведем погоднне условия, от-

меченнне во время преобладания первого типа цинлонической деятельности (срок карты на рис. 2 входит в рассматриваемнй период). В период с 26 апреля по 9 мая I989 г. преобланала активная циклоническая делтельность во Фронтальной зоне. Наблюдалось образование многочисленных неглубоких циклонов. В основной массе траектории их движения не проходили севернее $50^{\circ}$ ю..ा. Они приносили неустойчивую погоду, с ветрами, часто меннопиими свое направление. Наблюдалась сплошная многослойная облачность с преобладанием нижнего и среднего ярусов. Отмечались туманы и обложнне осадки. Рассматривая ход метеоэлементов, отмеченн⿺йи в точке судна, можно сказать, что доминирующими были ветра западных и северо-западных направлений. Скорости ветра имели широкий диапазон значений от 3 до $26 \mathrm{~m} / \mathrm{c}$ (порнвы). Среднее атмосферное давление составило 998,5 мб, минимальное - 974,5, максимальное - IOIЗ,0 мб. Температура воздуха колебалась от $I, 9$ до $7,4^{\circ} \mathrm{C}$, среднее значение составило $4, I^{\circ} \mathrm{C}$.


Рис. 2. Карта приземного анализа за 29.04.89

На спутниковых снимках хорошо прослеживается зона максималь－ ной облачности，расположение и Форма которой схожи с таковыми зо－ нн максимальнои повторяемости Фронтов．На рис． 3 изобраменн по－ ложения зон максимальной повторяемости Фронтов для летнего и зим－ него периодов．Как правило，циклонн，относящиеся к этому типу цик－ логенеза，не вызнвают сильного ветрового волнения из－за непродол－ жительности ветрового воздействия и постоянно⿱⿱卄一八殳 сменн нащравления．

В тор о и т и І．Циклоническая делтельность этого тиша характерна только для летнего периода．Барические дещрессии раз－ виваются над континентальнои частыи lожной Америии вследствие про－ грева подстилающей поверхности или над прибрежной частьд в ре－ зультате значительннх температурньх контрастов между теплой по－ верхносты суши и относительно холодной поверхносты водь．Мно－ гочисленные случаи развития этих депрессий наблодались в районе $35-50^{\circ}$ ю．．ा．，которне в значительном ряде случаев образовывали са－ мостоятельные циклонн．Выход циклона，образовавшегося над мате－ риком，в район ЮЗА（как пример）показан на карте приземного ана－ лиза на рис．4，а．Даннне циклоны предетавляли из себя неглубокие образования，имеощие в основном одну－две замкнутне изобарн．На－ правление их движения，нак правило，было пго－восточным без ка－ ких－либо значительных отклонений．Однако нужно отметить тот факт， что в двух случаях циклоны，образовавшиеся над материком，после выхода на морскую поверхность резко меняли направление своего дви－ жения（с преобладанием западной составлнощей），а через непродол－ жительное время вновь обретали гго－восточное направление．

Tрети击 тиІ．Внход циклонов из Тихого океана через пралив Дрейка является неотъемлемой частьо общей картинь циклоге－ неза в районе Пжной Атлантики и немаловажным погодообразуюиим фак－ тором．Антарктический полуостров и Гожная Америка представляот со－ бой значительное орографическое препятствие на пути следования тихоонеанских пиклонов．Для низких барических образований это пре－ пятствие во многих случаях непреодолимо，и они разрушаются，так и не выйдя в Атлантику．При переваливании через щжую оконечность Іхной Америки средние и высокие атмосферные вихри частично разру－ шаются．Но，как правило，основная облачная масса накапливается у восточного побережья，тде формируется новый вихрь，которий про－ должает свое движение на восток．


Рис. 3. Зона максимальной повторяемости Фронтов:
а - лето; б - зима


Рис. 4. Карта приземного анализа:
а - за 05.IO.88; б - за 2I.IO.88

Гребни ввсокого давления, связаннне с ржным субтропическим Атлантическим антиццклоном, тоже оказнвашт блокирушший эффект для тихоокеаноких диклонов. Нужно остановиться на причинах возникновения этих гребней, чтобы более наглядно представить обпуо картину рассматриваемого типа циклонической деятельности. На среднемесячных многолетних картах атмосферного давления (на уровне моря) видно, что центр субтропического Атлантического антицикллона меняет свое положение в зависимости от сезона года; изменения эти незначительны, но они присутствуот. Так, в летний сезон Пжного полутария центр несколько смещен на восток по отношению к өго положению в период зтмн. Подлитка субтропического антициклона, вак было сказано внше, в основном идет за счет континентального Антарктического антициклона. Однако надо отметить, что в западнои части может образовнваться свой максимум из-за взаимодействия Тихоокеанского и Атлантического антициклонов. Образование әтого макстмума и его постоянное присутствие относятся к летнему сезону. Нередко он имеет две замкнутне изобары с давлением в дентре 1020 IO25 мб. Блокирушпие гребни внсокого давления связаны, как правило, именно с этим центром Атлантического антициклона. В образовании этого центра и во взаимодействии его с Тихоокеанским антициклоном, по-видимому, играет роль положение континентального (Боливийского) циклона.

Образувииеся гребни високого давления малоподвижнн, их мжная нериферия может достигать $60-65^{\circ}$ ю.‥ Отмечались случаи образования в внной части гребня максимума с одной замснутой изобарой. Прпмер образования такого самостоятельного центра представлен на рис. 4,б.

Вследствие перечисленных факторов, противодействувщих продвиженио тихоокеанских циклонов на восток через пролив Дрейка,циклоны выходят в Атлантику в завершающей стадии своето развития, не репки случаи выхода уже окклодированннх циклонов. Оси их наклонены незначительно, что говорит о невысоких скоростях их движения. Траектории движения после внхода из пролива Дрейка имеют Форму пологой дуги, вершина которой обращена на север.Проникновение их на юг ограничено $65-70^{\circ}$ г..․ Бивают случаи, когда выход цииглонов из Тихого океана в Атлантический отличается от описанной ввше картины. Это происходит при сильно развитом на востоке Тихого океана гребне высокого давления. При этом циилоны продвигаются 32

не через пролив Дреикка, а через Антарктическии полуостров, траектории центров проходят по полуострову или несколько восточнее, но параллельно ему. Виидя в Атлантику, они двигаштся практически в меридиональном направлении с незначительнои восточнои составляющей. Эти глубокие барические образования (до шести замкнутнх изобар), захватывая холодный антарктический воздух, приносят штормовую погоду, с сильными ветрами и обильными осадками в виде снега или ледяной крупн. Имея большие скорости движения, нередко они проникашт на север, вплоть до $40^{\circ}$ м.ш. Достигнув максимальной точки своего продвижения на север, циклоны заполняются, меняют направление движения на вго-восточное и быстро разрушаются.

Чтобы более наглядно представить погоднне условия, характернне для этой ситуации, опишем погоду, которая наблодалась в период с 27.09 по I7.IO. 88 (I4-й рейс PTMC "Возрождение"). Этот период интересен еще тем, что наблюдалась смена одного типа циклонической деятельности на другой. Даты карт на рис. 4 входят в этот период. В начале данного периода погода обусловливалась взаимодействием Атлантического антициклона с неглубоким циклоном, вышедшим из Тєхого океана через пролив Дрейка. Центр Атлантического антициклона располагался на $30^{\circ} \mathrm{1}$.ख. пимел одну замкнутую изобару IO 20 мб. Циклон имел в центре давление 985 мб. Выйдя из пролива Дрейка, циклон имел северо-восточное направление движения. Скорость движения составила $40-45 \mathrm{~km} / ч$. В этот период циклон прошел стадиио окклодирования и стал заполняться. В своем движении пиклон прошел над рассматриваемым районом своей северной периэ̆ерией, вследствие чего до 30.09 преобладали ветра западного направления. Наблюдались скорости ветра до $20 \mathrm{~m} / \mathrm{c}$. Из-за этого развилось относительно сильное ветровое волнение, высота волн достигала 5 m . Весь район был покрнт ІО-балльной многослойной облачностью с преобладанием нижнего и среднего ярусов. Прошли обложные осадки. Температура воздуха падала до $0^{\circ} \mathrm{C}$.

После прохождения данного циклона, с OI.IO начали развиваться два гребня высокого давления, связанные с Атлантическим вжным и Антарктическим континентальннм антициклонами, которне блокировали выход тихоокеанских циклонов.

С 02. IO севернее района стал развиваться отдельный антициклон, который к 04.10 имел три замкнутые изобары с давлением IO35 мб в центре. Антициклон смещался в вого-восточном направле-

нии. Ветра за время прохождения антициклона бнли северо-северовосточные, скорости их были нөзначительни и составили в срөднем $5-6 \mathrm{~m} / \mathrm{c}$. Температура воздуха возросла до $3-4^{\circ} \mathrm{C}$. Прошли небольшие обложнне осапки, наблпдался туман, который ухудшил видцмость до 200 m . Это объясняется прохождением более теплых воздушных масс, принесенных антициклоном, над холодной поверхностью. После прохождения антициклона погоду над районом определил циклон, который образовался над материком в районе Ла-Платы. Этот неглубокий циклон имел высокуо скорость движения. Давление в его центре составило IOOO мб. В то же время через пролив Дрейка вншел глубокий циклон, который к I2.IO стал полносты определять погоду района. Он имел шесть замкнутнх изобар с давлением в центре 970 мб. Перемещался он в восточном направлении. За это время наблодалась погода, характерная для северной периферии, так как траектория движения центра пропла несколько пжнне района. Над районом располагалось высокоградиентноө поле давления, что привело к усилению ветра западннх направлений до $\mathrm{I} 3-\mathrm{I} 4 \mathrm{~m} / \mathrm{c}$. Все әто время район был закрыт 8-І0-балльной облачностыо с преооладанием нижнего яруса. Наблодались обложнне осадки в виде снега и снежннх зерен, что резко ухудшало видимость.

С 20.10 Атлантический акннй антициклон сместился в вого-восточном направлении, у него развился мощннй гребень, мжная часть которого достигла Антарктического полуострова. Одна изобара замкнулась, образовав отдөльннй центр, расположенннй нго-восточнее пролива Дрейка. В этот период преобладала зональная циркуляция воздушннх масс. Ветра отмечались северннх направлений со скоростью в среднем $5-6 \mathrm{~m} / \mathrm{c}$. Облачность составила $5-7$ баллов. Высота волн не превышала 3 полуметров. Днем температура воздуха поднималась до $7^{\circ} \mathrm{C}$.

Четвертый ти І. Выход циклонов из низких широт в высокие не характерен ддя района 103A, в течение рейсов он наблодался в единичных случаях. Это объясняется тем, что траектории их движения приурочены к центральной части океана. Однако на них тоже необходимо обратить внимание. Эти циклонн образуются над поверхностыю океана в субтропической зоне, имеют большой влагозапас и приносят с собой штормовую погоду с ливневыми осадками, правда, нередко со значительным повншением температуры (до $4-5^{\circ} \mathrm{C}$ ). Облачные системы этих циклонов хорошо прослеживаются на спутнико34

вых снимках. Они представляот собон обширнне облачнне вихри с ярко внраженными фронтальными облачными полосами. Интересно отметить, что теплыө сөкторы этих циклонов также закрыты облачностью (возможна многослойная с прөобладанием верхнего яруса).

На рис. 5 представлена карта траекторий движения циклонов, составленная в $12-$ м рейсе РTMC "Возрождение" (сентябрь 1987 г. Февраль 1988 г.). Как видно из этой карты, основная масса циклонов проходила своими центрами юкннее $50^{\circ}$ 10.ш. - это тихоокеанские циклоны и диклони, образовавшиеся во фронтальной зоне. Также хорошо видна "дорога" пиклонов, образовавшихся над материком. Эти полученные данные хорошо вписываются в общуо схему циклонической делтельности над Южной Атлантикой, что подтвержцаетоя картой (рис. 6) (Метеорология. ... 1976).


Рис. 5. Траектории движения циклонов
Остановимся на некоторых особенностях погодн, которне
были отмечены в период рейсов.

Во-первых, нужно сказать об адвективных туманах,которые практическии постолнно распространены к вгу от северной границџ $101 \Phi 3$.

Иx наличие объясняется постоянным внносом более теплых влажннх воздушннх масс на холодную новерхность Фронтальной зоны ॠ антарктических вод. Эти выносн обусловлены активной циклонической деятельностыю в этих широтах.


Рис. 6. Распределение центров циклонов на өдиницу площади в летний период

Во-вторих, обратим внимание на облачные системы, которые наблодаются в районе Фолклендских островов. При анализе спутниковнх снимков было отмечено, что там часто присутствует область, открытая от облачности ("облачное окно"). "Окно" имеет вытянутую в меридиональном направлении Форму. Площадь и форма "окна" могут изменяться, но центр өго расположен приблизительно в районе островов. Наличие этой области, вероятно, можно объяснить расположением траекторий циклонов над районом. Внше был приведен анализ циклонической деятельности, из которого видно, что пути движения циклонов, как правило, не проходят через район Фолклендских островов и западнее его, что и приводит к образованию "облачного окна".


Рис. 7. Характерная для циклона облачная спираль

В заключение хочется отметить значимость спутниковой инф̆ормации при анализе синоптической ситуации. Спутниковые снимки дают наглядное представление о поле облачности. На них хорошо виднн структуры, характернне для циклонов (в виде спиралей) и длля атмосферннх фронтов (в виде облачннх полос). Имея ряд последовательных снимков, можно прогнозировать развитие и движение барических образований. Используя комбинированнне изображения, мохно определить области вероятного выпадения осадков. Разработаны методики, используя которне по облачным структурам удается восстановить поле приводного ветра. На снимке (рис. 7), полученном еп спутника NOAA, хорошо вцдна облачная система циклона (облачные

поля окрашенн бөлна цветом). Спутниковая информация является весомым дополнөнием к картам погоды и натурным наблгодениям.

## Выводы

I. Над раионом Кжной Атлантики располагартся три типа воздушннх масс: морская тропическая, морская полярная и морская антарктическая. В свою очөредь, морская полярная воздушная масса делится на два подтипа: с нөоднородной төплой фазой и с однородной холодной фазой, граница между которыми проходит вдоль Антарктической конвергенции.
2. Поле атмосферных перөносов в Пкной Атлантике определяется взаимодействием и взаимннм расположением квазистационарних барических образований: Атлантического и Тихоокеанского субтропических антициклонов, барических дещрессий над морями Уэдделла. Беллинсгаузена и Рисер-Ларсена, Антарктического континентального антициклона, а также зонн активного циклогенеза пжнее 40-х широт.
3. Циклоническуо деятельность в данном районе можно разделить на четыре основных типа:

образование циклонов во Фрронтальной зоне;
образование циклонов над Юхной Америкой;
внход тихоокөанских циклонов;
выход циклонов из низких широт.
4. Спутниковая информация представляет весомое дополнение к синоптической информации и данным натурных наблпдений и дает возможность не только уточнять синоптическую ситуацию, но и прогнозировать еө.

Список использованной литературы

А т л а с океанов / Под ред. Горшкова С.Г. - Л.: ГУНО МО CCCP, 1974.

Метеорология Южного полушария / Іод ред. Ч.Ньютона. - Л.: Гидрометеоиздат, I976.

