Южной Полярной фронтальной зоне. Т. 2: Сборник научных трудов. М.: ВНИРО, 1991.

Современные методы количественной оценки распределения морского планктона / Под ред. М.Е.Виноградова. - М.: Наука. 1983. - 279 с.

В.Л.Зубаревич, Н.В.Мордасова (ВНИРО)

АЗОТ АММОНИЙНЫЙ И МОЧЕВИНА В РАЙОНЕ ЮЖНОЙ ПОЛЯРНОЙ ФРОНТАЛЬНОЙ ЗОНЫ АТЛАНТИЧЕСКОГО ОКЕАНА

В районе Южной Полярной фронтальной зоны (ЮПФЗ) юго-западной части Атлантического океана. как в антарктических, так и в субантарктических водах, азот практически не лимитирует развитие фитопланктона (Особенности..., 1990), количество нитратного азота достаточно велико во все сезоны. Однако фитопланктон является активным потребителем и других его форм.как минеральных, так и органических. В первую очередь это касается азота аммонийного, который, по данным некоторых авторов (Gilbert et al., 1982), является паже более предпочтительным по сравнению с другими формами азота. То же самое можно сказать и относительно мочевины.которая цля многих диатомовых по потреблению стоит на втором месте после аммиака (Harvey et al., 1967). Исследование этих форм азота в последнее время приобретает все большее значение при изучении процессов трансформации и утилизации азотистых соединений в морской воде. Однако вследствие методических трудностей количество данных по аммонийному азоту, и особенно по мочевине, весьма немногочисленно, а цля района ЮПФЗ южной части Атлантического океана они практически отсутствуют.

В 1987-1988 гг. в XII и XIУ рейсах РТМС "Возрождение" в югозападной части Атлантического океана, в районе ЮПФЗ, на участке, ограниченном 48-52° ю.ш.; 24-40° з.д., представляющем весьма большой интерес с точки зрения биопродуктивности, был выполнен широкий комплекс гидрохимических определений, включая азот аммонийный и мочевину. Определения последних осуществлялись на про-109 гочном автоанализаторе AA-IIC фирмы "Техникон": мочевины - по Ныювеллу с диацетилмонооксидом (Newell et al., 1967), аммиака - по Сэджи-Солорзано (Сапожников, 1978).

Пространственное распределение аммиака и мочевини на обследованной акватории подтверждает крайне сложную структуру вод ЮПФЗ, которая прослеживается по океанологическим характеристикам. Максимальные количества аммонийного азота летом приурочены, как правило, к участкам, характеризующимся наиболее высокой биологической продуктивностью, в первую очередь, к градиентным зонам, особенно у южной границы ЮПФЗ, а также к зонам различных круговоротов (рис. I). Это связано с тем что наряду с непосредственным выделением живыми организмами, первостепенным источником аммонийного азота является органическое вещество. Что касается мочевины, то это в основном продукт метаболизма живых организмов, поэтому ее распределение ближе к иятнистой структуре распределения зоопланктона и других живых объектов в океане.

В летний период, во время интенсивного цветения фитопланктона (насыщенность вод кислородом поверхностного слоя IIO-II8%), при установившейся стратификации и ярковыраженном слое скачка плотности, эти соединения азота концентрируются в основном в эвфотическом слое с максимумом на глубинах 30-75 м (рис. 2). Концентрация аммонийного азота в слое максимума, как правило, составляла I,O-I,6 мкг-ат/л, мочевины - 0,6-I,2 мкг-ат/л, превышая их содержание у поверхности в I,5-2,0 раза. Ниже слоя фотосинтеза количество этих компонентов, в частности аммиака, остается достаточно высоким, достигая на отдельных участках на глубинах 800-I000 м -0,6-0,8 мкг-ат/л, что характерно, в первую очередь, для вод фронтальной структуры, где происходит интенсивное вертикальное движение вод. Отдельные пятна повышенных концентраций мочевины - до 0,4-0,6 мкг-ат/л наблюдались на глубинах 200, 300, 800 м.

Слои максимального содержания аммонийного азота и мочевины, как правило, приурочены к глубине залегания скоплений живых организмов, в частности светящегося анчоуса. Это было подтверждено в декабре 1987 г. непосредственно в природных условиях in situ в районе сконцентрировавшихся скоплений миктофид, а также фито- и зоопланктона при прицельном отборе проб в центре скоплений, выявленных по гидроакустическим записям, с одновременным отбором проб на стандартных горизонтах за их пределами (рис. 3, a, б). 110

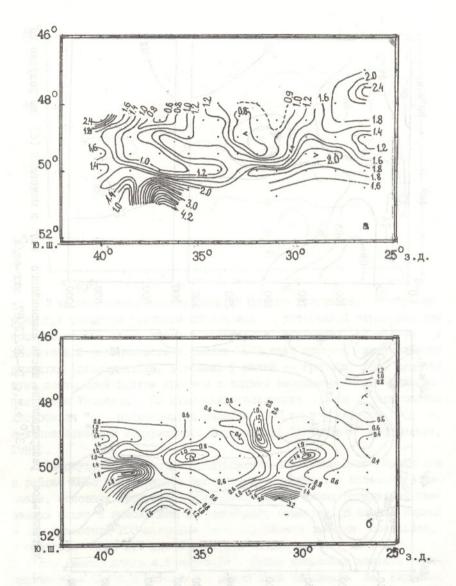


Рис. I. Распределение аммонийного азота (а) и мочевины (б) в районе ЮПРЗ в декабре 1987 г., мкг-ат/л (максимальные величины в слое)

III

II2

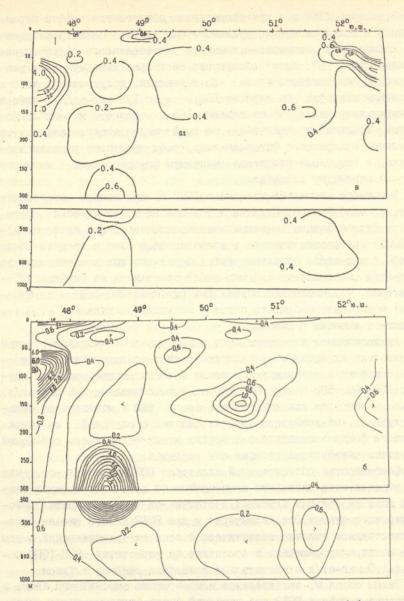
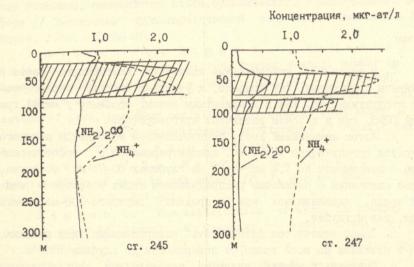


Рис. З. Вертикальное распределение аммонийного азота (а) и мочевины (б) на разрезе по 250 з.д., ЗІ.10-02.11.87, мкг-ат/л

II3


В декабре 1988 г. при проведении аналогичных работ параллельно с использованием погружаемого флуориметра "Акватрака", дающего возможность непрерывно измерять интенсивность флуоресценции хлорофилла "а", было обнаружено несколько максимумов в распределении аммонийного азота по вертикали, приуроченных либо к скоплениям миктофид на глубине 100 м – до 1,5 мкг-ат/л, либо к максимуму хлорофилла "а" на глубине 165 м – более 2 мкг-ат/л. Последний (больший по величине), по всей вероятности, связан со скоплением отмирающего фитопланктона, т.е. продуктов распада хлорофилла, в том числе феофитина, максимум флуоресценции которого близок к максимуму хлорофилла.


В октябре аномально холодного 1987 г. при полном отсутствии прогрева, слабой стратификации вод и слабой интенсивности фотосинтеза фитопланктона (максимальная насыщенность вод кислородом – 100–103%) содержание аммиака в поверхностном слое в среднем было около 0,4 мкг-ат/л; отдельные пятна более высоких концентраций до 2 мкг-ат/л (максимально 4,8 мкг-ат/л) отмечались на глубинах 75 – 100 м (рис. 4). Несколько глубже (на глубинах 300–400 и 500 – 800 м) можно было наблюдать пятна с меньшими величинами – 0,4 – 0,6 мкг-ат аммиака в литре.

Аналогичным в это время было и распределение мочевины: при относительно однородном ее распределении в поверхностном слое – 0,4-0,6 мкг-ат/л – выделяются пятна высоких концентраций на глубинах 100,300, 500 м – до 3-8 мкг-ат/л (максимально 9,8 мкг-ат/л). Высокие количества как аммонийного азота, так и мочевины на больших глубинах, по всей вероятности, связаны с глубиной обитания зимующего фонда зоопланктона и других живых организмов, основными продуктами метаболизма которых они являются.

Особенностью обследованной акватории ЮПФЗ является то, что концентрации этих лабильных компонентов не достигают нулевых значений даже на больших глубинах в отличие от других открытых районов Мирового океана.Это характерно и для ЮПФЗ Тихого океана.Однако существенное отличие атлантической зоны от тихоокеанской в том, что концентрации аммиака в Атлантике на горизонтах 800-1000 м до 0,4-1,0 мкг-ат/л - значительно превышают таковые в Тихом.

Таким образом, значительные концентрации аммонийного азота и и мочевины в районе ЮПФЗ юго-западной части Атлантического океана во всей толще, от поверхности до глубины 1000 м, свидетельствуют о 114 высокой интенсивности продукционно-деструкционных процессов во фронтальных зонах. Такого же порядка величины содержания мочевины – до 6-7 мкг-ат/л отмечались в Южной Атлантике в зоне ЮПФЗ в XXIII рейсе НПС "Академик Книпович" в феврале-марте 1985 г. (Аржанова и др., 1986). Это обусловлено физическим скапливанием в зонах фронтов органического вещества, зоопланктона, бактерий и других поставщиков аммиака и мочевины в воду. Приуроченность их максимальных концентраций к фронтальным зонам, где скапливается большое количество планктона и повышается бактериальная активность, отмечена также в южной части Тихого океана в 34-м рейсе НИС "Дмитрий Менделеев" (Сапожников, Пропп, 1988).

В целом, поскольку аммонийный азот и мочевина тесно связаны с жизнедеятельностью живых организмов в море, они являются показателями биопродуктивности района. Количественное содержание этих соединений азота в водной толще в районе ЮПФЗ находится на том же уровне, что и в зоне Перуанского апвеллинга, одного из самых продуктивных районов Мирового океана (Remsen, 1971). Это свидетель-115 ствует о высокой продуктивности вод ЮПФЗ юго-западной части Атлантического океана, что подтверждается данными по хлорофиллу "а", содержание которого в летний период по всей обследованной акватории от поверхности до глубины 50-75 м, как правило, превышало I мкг/л (величину, характерную для эвтрофных вод), достигая на отдельных станциях 3-4 мкг/л.

Исследования вертикального распределения аммонийного азота и мочевины, проведенные непосредственно in situ в морской воде, показали, что эти гидрохимические параметры, непосредственно связанные с деятельностью живых организмов, могут служить индикаторами скоплений миктофид и других объектов промысла.

Выводы

I. В водах ЮПФЗ максимальные количества аммонийного азота и мочевины приурочены, как правило, к участкам высокой биологической продуктивности, как к градиентным зонам, особенно у южной границы ЮПФЗ, так и к зонам различных круговоротов.

2. Летом аммонийный азот, первостепенным источником которого является органическое вещество, концентрировался в эвфотической зоне с максимумом до I,6 мкг-ат/л на глубинах 30-75 м; мочевина, тесно связанная с пятнистым распределением живых объектов в водной толще, скапливалась как в пределах верхнего IOO-метрового слоя, так и глубже.

3. Зимой отмечается пятнистость распределения как аммиака, так и мочевины по всей толще, от поверхности до глубины ICOO м.

4. Мочевина и аммиак являются показателями продуктивности района и могут служить индикаторами скоплений живых объектов, в частности миктофид.

Список использованной литературы

Аржанова Н. В., Зураревич В. Л., Налетова И. А. Минеральные и органические формы азота в южной части Атлантического океана и в море Скотия. - М.: ВНИРО, 1986. - 50 с. 116 Особенности гидрохимического режима вод в районе ЮПФЗ юго-западной части Атлантического океана / Н.В.Мордасова, Е.В.Дафнер, В.Л.Зубаревич, Ю.А.Михайловский, П.Ю.Селин, А.И.Бондаренко // Биологические ресурсы: состояние, перспективы и проблемы их рационального использования. – Электрона Карлсберга в Южной Полярной фронтальной зоне. Т. I: Сборник научных трудов. М.: ВНИРО, 1990. – С. 90-109.

Сапожников В. В. Определение аммонийного азота в морской воде (определение аммиака по Сэджи-Солорзано) // Методы гидрохимических исследований океана. – М.: Наука, 1978. – С.179–185.

Сапожников В. В., Пропп Л. Н. Распределение мочевины, аммонийного азота, органического и минерального фосфора // Экосистемы субантарктической зоны Тихого океана. - М.: Наука, 1988. - С. 86-89.

Gilbert P.M., Biggs D.C., McCarthyJ.J. Utilization of ammonium and nitrate during austral summer in the Scotia Sea // Deep-Sea Res. - 1982. - Vol. 29. - P. 837-850.

Harvey W. A., Caperon J. The rate of utilization of urea, ammonium and nitrate by natural population of marine phytoplankton in a euphtrophic environment // Pacific Science. - 1967. - Vol. 30, N 4. - P. 329-340.

Newell D.S., Morgan B., Cundy J. The determination of urea in sea water // J. Marine Res. - 1967. Vol. 25, N 2. - P. 201-207.

Remsen C. The distribution of urea in coastal and oceanic water // Limnol. & Oceanogr. - 1971. - Vol. 16, N 5. P. 732-740.

М.А.Богданов, С.И.Потайчук

ОЦЕНКА СТЕПЕНИ ИЗМЕНЧИВОСТИ МЕАНДРИРОВАНИЯ ЮЖНОЙ ПОЛЯРНОЙ ФРОНТАЛЬНОЙ ЗОНЫ ПО КАРТАМ ТПО

Изменчивость океанологических условий представляет собой важнейший фактор формирования биологической продуктивности, оказывает большое влияние на все жизненные циклы как гидробионтов в це-117