УДК 597–1.044(265.54)

Л.Т. Ковековдова, М.В. Симоконь*

Тихоокеанский научно-исследовательский рыбохозяйственный центр,
690091, г. Владивосток, пер. Шевченко, 4

ОЦЕНКА СОДЕРЖАНИЯ МЕТАЛЛОВ И МЫШЬЯКА
В ДОНЫХ ОТЛОЖЕНИЯХ И РЫБАХ
ИЗ РЕК БАССЕЙНА ЗАЛИВА ПЕТРА ВЕЛИКОГО
(ЯПОНСКОЕ МОРЕ)

Определены современные уровни концентраций Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn в донных отложениях (ДО) рек Раздольна, Артемовка, Суходол, Тесная, Гладкая, впадающих в залив Петра Великого (Японское море). Дана сравнительная оценка пространственного распределения концентраций элементов в ДО рек. Выявлено, что уровни концентраций As в ДО р. Артемовка, Cr и Cu в ДО р. Раздольна, Pb в ДО реках Суходол и Раздольная могут вызывать негативные биологические отклики у водных организмов. Определено содержание As, Hg, Pb, Cd, Zn, Cu, Ni, Se, Co, Cr, Fe в органах мелкочешуйной красноперки Tribolodon brandtii, серебряного карася Carassius gibelio, пилегаса Liza haematocheila, гольяна Phoxinus sp. из эстуарен р. Артемовка и Раздольная. Показано, что максимальные уровни содержания токсичных элементов характерны для печени рыб, независимо от видовой принадлежности. Мыширы рыб имеют относительно низкие концентрации микрозлементов. Отмечено различие в уровнях содержания элементов в печени красноперок из рек Артемовки и Раздольной, что может свидетельствовать о различии экологической ситуации в реках. Содержание нормируемых токсичных элементов в тканях рыб не превышало предельно допустимых уровней.

Ключевые слова: атомно-абсорбционная спектрофотометрия, металлы, мышьяк, донные отложения, рыбы, реки.

Recent concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn in bottom sediments from the rivers flowing into Peter the Great Bay (Razdolnaya, Artymovka, Sukhodol, Tesnaya, Gladyaya) are determined using flame and flameless methods of atomic absorption on the spectrophotometer Shimadzu AA6800 and mercury analyzer Hiranuma HG-1. Potentially dangerous for aquatic biota concentrations are found in the Artymovka (As 13.2 mg/kg), in the Razdolnaya (Cr 83.8 mg/kg, Cu 22.5 mg/kg, Pb 135 mg/kg), and in the Sukhodol (Pb 90 mg/kg) rivers. Besides, the content of As, Hg, Pb, Cd, Zn, Cu, Ni, Se, Co, Cr, and Fe is determined in certain organs of fishes: pacific redfin (Tribolodon brandtii), prussian carp (Carassius gibelio), redlip mullet (Liza haematocheila), and minnow (Phoxinus sp.) caught

* Ковековдова Лидия Тихоновна, кандидат биологических наук, старший научный сотрудник, e-mail: kovekovdova@mail.ru; Симоконь Михаил Витальевич, кандидат биологических наук, заведующий лабораторией, e-mail: msimokon@gmail.com.
Введение

В Приморье наибольшая антропогенная нагрузка приходится на зал. Петра Великого (Японское море). Загрязняющие вещества различной химической природы поступают в него со сточными водами береговых источников и привносятся с речными стоками всего водосборного бассейна. Современные уровни содержания токсичных элементов в донных отложениях прустьевых зон зал. Петра Великого и рек, впадающих в него, практически не изучены. Этот факт осложняет оценку изменения экологического состояния рек, их эстuarных зон и промысловых гидробионтов. На примере типичных прибрежных и речных экосистем Приморья В.М. Шульгиным (2007) было показано, что для оценки степени антропогенной нагрузки по содержанию микроэлементов в различных компонентах наиболее рационально использовать донные отложения (ДО) и взвесь. Уровни содержания элементов в ДО дают характеристику общего загрязнения водной среды и пространственного распределения техногенной нагрузки по акватории. Содержание металлов в органах отдельных видов гидробионтов может использоваться для оценки биодоступного загрязнения.

Многие водные организмы способны накапливать микроэлементы, в том числе и токсичные, в количествах, превышающих предельно допустимые уровни (ПДУ). Особенно важны исследования накопления токсичных элементов рыбами — объектами прибрежного рыболовства, которые обитают в акваториях, наиболее подверженных антропогенному прессу.

Цель работы — оценка уровней содержания металлов и мышьяка в донных отложениях и рыбах из рек бассейна зал. Петра Великого (Японское море).

Материалы и методы

Районами исследования были прустьевые зоны зал. Петра Великого (Японское море) и реки: Раздольная, впадающая в Амурский залив, Артемовка и Суходол, впадающие в Уссурийский залив, Тесная и Гладкая, впадающие в зал. Посвета. Станции отбора проб ДО представлены на рис. 1–5.

Материалом для исследования служили ДО и гидробионты: мелкочешуйная красноперка Tribolodon brandtii, серебряный карась Carassius gibelio, пилентас Liza haematocheila, гольян Phoxinus sp. (табл. 1).

Отбор ДО и рыб был осуществлен в июне-июле 2007 г. Общее количество исследованных проб ДО — 40, особей 4 видов пресноводных и полупроходных рыб — 45. Количество элемент-определений составило 2028.

Подготовка проб ДО к атомно-абсорбционному определению элементов осуществлялась методом кислотной минерализации в соответствии с методикой (РД 52.10.556-95). Рыб препаратировали на органы. Анализу на содержание элементов подвергались печень и мышцы рыб, минерализованные азотной кислотой в соответствии с методическими указаниями по выполнению измерений массовых концентраций элементов, разработанными Азовским научно-исследовательским институтом рыбного хозяйства (Методические рекомендации ..., 1995).
Измерение концентраций Al, Zn, Cu, Ni, Co, Cr, Pb, Fe проводилось на атомно-абсорбционном спектрофотометре фирмы "Nippon Jarrell Ash", модель
Рис. 3. Карта-схема отбора проб донных отложений в р. Раздольной
Fig. 3. Scheme of bottom sediments sampling in the Razdolnaya

Рис. 4. Карта-схема отбора проб донных отложений в р. Тесной
Fig. 4. Scheme of bottom sediment sampling in the Tesnaya
AA-855. В качестве атомизатора использовали одношлелевую горелку; в качестве горючей смеси — ацетилен-воздух. Определение Al проводили в пламени закиси азота — ацетилен. Фон корректировался дейтериевой лампой. Чувствительность определения составила: для железа — 2,0 мкг/мл; цинка — 0,020; меди — 0,005; хрома — 0,020; никеля — 0,020; кобальта — 0,020; свинца — 0,050 мкг/мл.

Концентрации As, Pb, Cd, Se устанавливали на атомно-абсорбционном спектрофотометре Shimadzu AA6800, где атомизатором служила графитовая кювета. Ртуть определяли беспламенной атомно-абсорбционной спектрофотометрией на приборе фирмы “Hiranuma”, HG-1.

Для сравнения использовали рабочие стандартные образцы растворов металлов, внесенные в Государственный реестр средств измерений (ГСО, ГСОРМ). Относительная погрешность определения элементов составляла не более 7%.

Статистическая обработка данных проводилась с использованием пакета прикладных программ Statistica 6.0. Для сокращения числа переменных (редукции данных) и определения структуры взаимосвязей между переменными, т.е. классификации переменных, при анализе донных отложений применялся факторный анализ.
Результаты и их обсуждение

Вода и ДО являются поставщиками химических элементов для водных организмов. Микроэлементный состав организмов неизбежно изменяется в зависимости от состава среды. Оптимальный для нормального протекания жизненных процессов синтез в организме биологически активных соединений, содержащих микроэлементы, наблюдается только в определенных пределах концентраций и соотношений элементов в среде. Системы организма, регулирующие обмен веществ, не могут быть одинаково эффективными и работать нормально при любых концентрациях элементов, поступающих в организм. Существуют такие пределы концентраций химических элементов, с которыми не могут справляться регулирующие системы (депонирования, выделения, барьерная, распределения микроэлементов между органами и тканями), в этом случае происходит срыв функций, возникают дисфункции (Ковалевский, 1974).

Поскольку уровни содержания токсичных элементов в ДО являются интегральным показателем загрязнения акваторий и позволяют судить о качестве среды и возможном негативном влиянии ее на существование водных организмов, были определены современные уровни содержания токсичных элементов в ДО прустьев зон зал. Петра Великого и рек, впадающих в него (табл. 2).

Таблица 2

<table>
<thead>
<tr>
<th>Элемент</th>
<th>Среднее</th>
<th>Min</th>
<th>Max</th>
<th>Стандартное отклонение</th>
<th>Нормальность</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>27646</td>
<td>6250</td>
<td>62500</td>
<td>12531</td>
<td>+</td>
</tr>
<tr>
<td>As</td>
<td>5,31</td>
<td>0,60</td>
<td>13,20</td>
<td>2,70</td>
<td>+</td>
</tr>
<tr>
<td>Cd</td>
<td>0,050</td>
<td>0,008</td>
<td>0,130</td>
<td>0,030</td>
<td>+</td>
</tr>
<tr>
<td>Co</td>
<td>8,43</td>
<td>1,25</td>
<td>13,80</td>
<td>2,81</td>
<td>+</td>
</tr>
<tr>
<td>Cr</td>
<td>34,0</td>
<td>6,25</td>
<td>83,80</td>
<td>23,30</td>
<td>-</td>
</tr>
<tr>
<td>Cu</td>
<td>12,17</td>
<td>3,0</td>
<td>22,50</td>
<td>5,43</td>
<td>+</td>
</tr>
<tr>
<td>Fe</td>
<td>20905</td>
<td>9000</td>
<td>29000</td>
<td>5496</td>
<td>+</td>
</tr>
<tr>
<td>Hg</td>
<td>0,040</td>
<td>0,010</td>
<td>0,070</td>
<td>0,020</td>
<td>+</td>
</tr>
<tr>
<td>Mn</td>
<td>289,8</td>
<td>62,5</td>
<td>700,0</td>
<td>169,4</td>
<td>+</td>
</tr>
<tr>
<td>Ni</td>
<td>16,0</td>
<td>1,25</td>
<td>41,30</td>
<td>9,75</td>
<td>+</td>
</tr>
<tr>
<td>Pb</td>
<td>14,70</td>
<td>3,75</td>
<td>135,0</td>
<td>21,0</td>
<td>-</td>
</tr>
<tr>
<td>Zn</td>
<td>53,5</td>
<td>20,0</td>
<td>97,5</td>
<td>15,3</td>
<td>+</td>
</tr>
</tbody>
</table>

В геохимических исследованиях данные, полученные при оценке состояния окружающей среды, прежде всего пространственно зависимы, отражающая локальные условия. Пространственно зависимые данные, каковым являются концентрации элементов в ДО из разных мест, часто не соответствуют нормальному распределению (Reimann, Filzmoser, 1999). Статистическая оценка содержания металлов и мышьяка в ДО рек показала, что для Cr и Pb, в отличие от других элементов (табл. 2), не удалось достичь нормальности распределения данных даже после лог-трансформации, согласно W критерию Вапири-Уилкса на уровне значимости 0,05. Это означает, что концентрации данных металлов в речных ДО относятся к разным выборкам, обусловленным естественными причинами либо формирующимися в результате деятельности человека.

На рис. 6 показаны графики распределения концентраций металлов в пространстве 3 факторов при извлечении в результате факторного анализа главных компонент (фактор 1–2 и фактор 1–3).

Фактор 1 объясняет 48,6 % общей групповой дисперсии, фактор 2 — 20,0, фактор 3 — 11,0 %. Три фактора описывают 79,6 % общей дисперсии системы.
(собственные значения факторов > 1). Величины факторных нагрузок статистически значимы при значениях > 0,70 на уровне значимости 0,05.

Рис. 6. Распределение элементов в пространстве 3 факторов (фактор 1 — фактор 2 и фактор 1 — фактор 3) в результате факторного анализа. Пояснения в тексте

Fig. 6. Results of factor analysis: diagrams of the metals distribution in the space of factors 1, 2 and 1, 3. The factors are interpreted in the text

Элементы I группы (рис. 6) проявляют сильную корреляционную связь с Al и Fe, химические соединения которых (оксиды, гидроксиды) относятся к основным формообразующим компонентам взвешенного вещества природных вод и, следовательно, донных отложений. Поэтому первая группа отражает терригенное поступление элементов в речные и эстuarные системы. Процесс денудации земной поверхности является физико-химической основой 1-го фактора.

Элементы II и III групп (рис. 6) слабо коррелируют с Fe и Al, а значит с гранулометрическим составом осадков.
Распределение Cd, As, Zn (группа II) и Hg, Pb (группа III) в донных осадках эстuarных зон бассейна зал. Петра Великого зависит от наличия антропогенных источников их поступления в речные экосистемы. Это могут быть как сельскохозяйственные сточные воды (мышьяк- и ртутьсодержащие пестициды), так и хозяйственно-бытовые и промышленные стоки поселков и городов, сбрасываемые в водотоки без очистки.

Дисперсионный анализ данных позволил выделить достоверные различия средних концентраций металлов и мышьяка в ДО исследуемых водотоков. Особенности накопления металлов в ДО рек в сравнительном плане представлены на рис. 7, 8.

Рис. 7. Графики сравнительного распределения концентраций Al, As, Cd, Co, Cr, Cu в ДО рек бассейна зал. Петра Великого
Fig. 7. Concentrations of Al, As, Cd, Co, Cr, Cu in bottom sediments from different rivers
Рис. 8. Графики сравнительного распределения концентраций Fe, Hg, Mn, Ni, Pb, Zn в ДО рек бассейна зал. Петра Великого.
Fig. 8. Concentrations of Fe, Hg, Mn, Ni, Pb, Zn in bottom sediments from different rivers.

Содержание Al, Cr, Cu и Zn в ДО р. Суходол отличалось незначительной вариабельностью. Концентрации марганца изменились от 137,5 мг/кг на ст. 4 до 487,5 мг/кг на ст. 10 (см. рис. 1). Самый высокий уровень концентрации свинца в ДО исследуемых акваторий отмечен на ст. 1 — 135 мг/кг.

В ДО р. Артемовка отмечали сравнительно высокие концентрации Al, As, Cd, Hg, Zn. Так, на ст. 11 содержание мышьяка достигало 13,2 мг/кг; на ст. 13 кадмий — 0,125 мг/кг, цинка — 97,5 мг/кг. Уровни содержания этих элементов в ДО р. Артемовка были самыми высокими.
В ДО р. Раздольной средние концентрации Co (13,8 мг/кг), Cr (83,8 мг/кг), Cu (22,5 мг/кг), Fe (29000 мг/кг), Mn (700 мг/кг), Ni (41,3 мг/кг) были максимальными.

В ДО рек Гладкой и Тесной отмечали сравнительно низкие концентрации элементов. Тем не менее в ДО р. Гладкой концентрация As на ст. 8 достигала 10,9 мг/кг, а Zn на ст. 5 — 90,0 мг/кг. В ДО р. Тесной на ст. 8, расположеной у устья, концентрация кадмия составила 0,09 мг/кг.

Уровень содержания элементов в ДО реки зависит от многих факторов: ее геохимических особенностей, площади водосбора, гидрологического режима, присутствия источников загрязнения на площади водосбора. К факторам, влияющим на концентрирование элементов в ДО, относятся также их физико-химические свойства — гранулометрический состав, пористость, наличие органических веществ, которые способны связывать элементы в комплексы. На формирование микроэлементного состава ДО исследуемых рек воздействуют все вышеперечисленные факторы. Отмеченная высокая концентрация Pb в ДО р. Суходол (ст. 1) свидетельствует о наличии здесь локального источника загрязнения свинцом.

Повышенные, относительно других рассматриваемых объектов, концентрации As, Cd, Hg, Zn в ДО р. Артемовка связаны с ее загрязнением хозяйственно-бытовыми и промышленными стоками г. Артем, а также поверхностными стоками сельскохозяйственных угодий. Максимальные уровни терригенных элементов Al, Fe, Co, Mn, характерные для ДО р. Раздольной, обусловлены тем, что она имеет самую большую площадь водосбора и большое количество мелкосернистой взвеси, поступающей в Амурский залив, образует илстые осадки. В устьевой части р. Раздольной формировались ДО, в которых значительно повышено содержание Cr, Cu, Ni. Это результат воздействия многочисленных источников загрязнения, расположенных на побережье. Вариабельность содержания элементов в ДО рек Гладкой и Тесной обусловлена главным образом их гранулометрическим составом.

Оценка возможности уровней содержания токсичных элементов в ДО оказывать негативный эффект на существование водных организмов проводилась по рекомендациям “Временного руководства по качеству донных отложений для сохранения водной жизни“ (Canadian Council ..., 1995). Известны пороговые уровни — ISQGs, ниже которых негативные биологические эффекты на донные организмы маловероятны, и уровни вероятного эффекта (“probable effect level” — PEL), выше которых эти эффекты достоверно наблюдаются (Canadian Council ..., 2001). Сравнение результатов с пороговыми уровнями показало, что уровни концентраций As в ДО р. Артемовка (ст. 1, 11, 13), Cr и Cu в ДО р. Раздольной, Pb в ДО рек Суходол (ст. 1) и Раздольная (ст. 8) могут вызывать негативные биологические отклики у водных организмов, особенно обитателей донных биоценозов.

Содержание токсичных элементов в рыbach и моллюсках из рек и их эстuarных зон исследуемых районов практически не изучено. Информация об уровнях концентраций и характере накопления элементов в органах рыб может быть использована в качестве индикаторов степени загрязнения водоемов этими элементами. Содержание элементов в рыbach прямо или косвенно связано с уровнем концентраций и формой присутствия элементов в гидросистемах (Parks et al., 1991).

Изучение формирования микроэлементного состава рыб невозможно без оценки закономерностей распределения элементов в отдельных органах и тканях, обладающих физиолого-биохимической спецификой. Ранее (Морозов, Петухов, 1986) было показано, что распределение микроэлементов в организме рыб весьма неоднородно. Нами проведен анализ содержания элементов в мышцах (используемых в пищу) и печени (органе, используемом при проведении мониторинга) рыб. Независимо от видовой принадлежности рыб As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, Zn в больших количествах содержались в их печени (табл. 3). Известно, что органы, ответственные за процессы секреции, экскреции и депонирования веществ в организме рыб, характеризуются повышенными концентраци-
Средние концентрации элементов в органах рыб, мг/кг сух. массы

<table>
<thead>
<tr>
<th>Орган</th>
<th>Cd</th>
<th>Co</th>
<th>Cr</th>
<th>Cu</th>
<th>Pb</th>
<th>Se</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вид</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Артемовка</td>
<td>0.001 ± 0.002</td>
<td>0.005 ± 0.005</td>
<td>0.016 ± 0.005</td>
<td>1.01 ± 0.05</td>
<td>0.45 ± 0.005</td>
<td>0.027 ± 0.002</td>
<td>1.15 ± 0.05</td>
</tr>
<tr>
<td>Красноперка</td>
<td>0.001 ± 0.002</td>
<td>0.005 ± 0.005</td>
<td>0.016 ± 0.005</td>
<td>1.01 ± 0.05</td>
<td>0.45 ± 0.005</td>
<td>0.027 ± 0.002</td>
<td>1.15 ± 0.05</td>
</tr>
<tr>
<td>Раздольная</td>
<td>0.001 ± 0.002</td>
<td>0.005 ± 0.005</td>
<td>0.016 ± 0.005</td>
<td>1.01 ± 0.05</td>
<td>0.45 ± 0.005</td>
<td>0.027 ± 0.002</td>
<td>1.15 ± 0.05</td>
</tr>
<tr>
<td>Пеленгас</td>
<td>0.001 ± 0.002</td>
<td>0.005 ± 0.005</td>
<td>0.016 ± 0.005</td>
<td>1.01 ± 0.05</td>
<td>0.45 ± 0.005</td>
<td>0.027 ± 0.002</td>
<td>1.15 ± 0.05</td>
</tr>
<tr>
<td>Голиаф</td>
<td>0.001 ± 0.002</td>
<td>0.005 ± 0.005</td>
<td>0.016 ± 0.005</td>
<td>1.01 ± 0.05</td>
<td>0.45 ± 0.005</td>
<td>0.027 ± 0.002</td>
<td>1.15 ± 0.05</td>
</tr>
</tbody>
</table>

Таблица 3

Английский перевод:

Table 3

Average concentrations of certain elements in fish tissues, mg/kg of dry weight

<table>
<thead>
<tr>
<th>Element</th>
<th>Cd</th>
<th>Co</th>
<th>Cr</th>
<th>Cu</th>
<th>Pb</th>
<th>Se</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artogowka</td>
<td>0.001 ± 0.002</td>
<td>0.005 ± 0.005</td>
<td>0.016 ± 0.005</td>
<td>1.01 ± 0.05</td>
<td>0.45 ± 0.005</td>
<td>0.027 ± 0.002</td>
<td>1.15 ± 0.05</td>
</tr>
<tr>
<td>Krasnoperka</td>
<td>0.001 ± 0.002</td>
<td>0.005 ± 0.005</td>
<td>0.016 ± 0.005</td>
<td>1.01 ± 0.05</td>
<td>0.45 ± 0.005</td>
<td>0.027 ± 0.002</td>
<td>1.15 ± 0.05</td>
</tr>
<tr>
<td>Rodolnaya</td>
<td>0.001 ± 0.002</td>
<td>0.005 ± 0.005</td>
<td>0.016 ± 0.005</td>
<td>1.01 ± 0.05</td>
<td>0.45 ± 0.005</td>
<td>0.027 ± 0.002</td>
<td>1.15 ± 0.05</td>
</tr>
<tr>
<td>Pelengas</td>
<td>0.001 ± 0.002</td>
<td>0.005 ± 0.005</td>
<td>0.016 ± 0.005</td>
<td>1.01 ± 0.05</td>
<td>0.45 ± 0.005</td>
<td>0.027 ± 0.002</td>
<td>1.15 ± 0.05</td>
</tr>
<tr>
<td>Goliaf</td>
<td>0.001 ± 0.002</td>
<td>0.005 ± 0.005</td>
<td>0.016 ± 0.005</td>
<td>1.01 ± 0.05</td>
<td>0.45 ± 0.005</td>
<td>0.027 ± 0.002</td>
<td>1.15 ± 0.05</td>
</tr>
</tbody>
</table>

Ямами токсичных элементов. Мышцы рыб имеют относительно низкие и маловариабельные концентрации микроэлементов. Это подтверждает наличие у них развитого механизма поддержания гомеостаза элементного состава мышц. Тем не менее мышцы, которые составляют в среднем около 50% массы тела, содержат большую часть массы всех токсичных элементов, находящихся в конкретной рыбе. Наибольший уровень токсичного элемента мышьяка отмечен в мышцах красноперки (полупроходимой генеративно пресноводный вид) и пеленгаса (полуспроходимо генеративно морской вид). Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, Zn в наибольшем количестве обнаружены в мышцах серебряного карася (пресноводный вид).

По мнению С.А. Петухова и Н.П. Морозова (1983), причиной реальной существующих и дос- товерных различий концентрации металлов в организме рыб разных видов может быть вариабельность биохимического и физиологического состояния особей выборки в момент их вылова.

Анализ 2 тыс. проб органов и тканей рыб, относившихся к 80 видам, выловленным во многих рыбопромысловых районах Атлантического, Тихого и Индийского океанов, показал отсутствие дос- товерных видовых различий в характере накопления металлов (Петухов, Морозов, 1983).
Различие в уровне концентраций элементов в рассмотренных видах рыб зависит от нескольких факторов: состояния среды обитания, биохимических характеристик рыб, их физиологического состояния, положения в трофической цепи. Вместе с тем следует отметить сходство в накоплении исследованных элементов в теле близких по экологии красноперки и пиленгаса, на протяжении жизненного цикла многократно переходящих из рек в море и обратно. В отличие от них карась обитает в воде, где присутствует большое количество взвесенных веществ и концентрация микроэлементов повышена, поэтому в организме их накапливается больше. Таким образом, можно сделать вывод о том, что разные уровни концентраций элементов в исследованных видах в основном определяются различиями их жизненных циклов и состоянием среды обитания.

Фактический материал, изложенный в монографии П.А. Попова (2002), свидетельствует о существенной зависимости элементного состава рыб и его динамики от условий среды. В качестве органа-индикатора у рыб применяется печень.

Сравнили уровни содержания элементов в печени красноперки из устьевых зон рек Артемовка и Раздольная.

Наибольший уровень мышьяка, кобальта, хрома, марганца, никеля, свинца и цинка характерен для печени красноперок, выловленных в устьевой зоне р. Артемовка, в то время как уровни концентраций железа, меди и селена были выше в печени рыб из р. Раздольной. Этот факт может свидетельствовать о специфике и разнице экологической ситуации относительно ряда элементов, сложившейся в эстuarных зонах рек. Следует отметить, что уровни содержания элементов в печени красноперок (как было показано выше) отразили повышенное содержание элементов в донных отложениях мест их обитания.

Cu, Fe, Mn, Ni, Se, Zn относятся к биологически активным элементам, Hg — к токсичным. Органические соединения ртути легко проникают в организм рыб, где и накапливаются (Прокофьев, 1981). В табл. 4 представлены диапазоны концентраций ртути в органах рыб.

Таблица 4

<table>
<thead>
<tr>
<th>Вид</th>
<th>Район</th>
<th>n</th>
<th>Орган</th>
<th>Hg</th>
<th>Диапазон C_n/C_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Красноперка</td>
<td>Амурский залив, р. Раздольная</td>
<td>10</td>
<td>Мышцы</td>
<td>0,038—0,040</td>
<td>1,0—1,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Печень</td>
<td>0,039—0,045</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Мышцы</td>
<td>0,030—0,035</td>
<td>1,10—1,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Печень</td>
<td>0,035—0,040</td>
<td></td>
</tr>
<tr>
<td>Карась</td>
<td>Уссурийский залив, р. Артемовка</td>
<td>7</td>
<td>Мышцы</td>
<td>0,028—0,032</td>
<td>1,0—1,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Печень</td>
<td>0,028—0,035</td>
<td></td>
</tr>
<tr>
<td>Пиленгас</td>
<td></td>
<td>3</td>
<td>Мышцы</td>
<td>0,045—0,050</td>
<td>1,0—1,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Печень</td>
<td>0,048—0,050</td>
<td></td>
</tr>
<tr>
<td>Гольян</td>
<td></td>
<td>3</td>
<td>Мышцы</td>
<td>0,020—0,025</td>
<td></td>
</tr>
</tbody>
</table>

Примечание. C_n — концентрация в печени; C_w — концентрация в мышцах.

Если следовать утверждению В.З. Латыповой с соавторами (1990), что соотношение концентраций ртути в печени и мышцах рыб, равное 0,5, свидетельствует о нормальном фоновом состоянии экосистемы, а большее 1,0 — о существующем загрязнении ртутью, то данные табл. 4 свидетельствуют о загрязнении ртутью исследуемых акваторий.

Допустимые уровни содержания токсичных элементов в мышцах рыб согласно санитарным нормам (СанПиН 2.3.2.1078-01) в миллиграммах на килограмм сырой массы составляют: для свинца — 1,0; для мышьяка — 5,0; для кадмия — 0,2; для ртути — 0,5. Содержание токсичных элементов в тканях обследованных рыб в пересчете на сырую массу (коэффициент пересчета — 5) не превышало ПДУ.
Заключение

Таким образом, нами определены современные уровни содержания Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn в донных отложениях эстuarных зон рек зал. Петра Великого. Применение методов статистики позволило дать сравнительную оценку их пространственного распределения в ДО. Выяснено, что уровни концентраций As в ДО р. Артемовка, Cr и Cu — в ДО р. Раздольной, свинца — в ДО рек Суходол и Раздольная могут вызывать негативные биологические отклики у водных организмов.

Определено содержание As, Hg, Pb, Cd, Zn, Cu, Ni, Se, Co, Cr, Fe в органах 4 видов рыб из эстuariev рек Артемовка и Раздольная.

Максимальные уровни содержания токсичных элементов характерны для печени рыб независимо от видовой принадлежности. Мышцы рыб имеют относительно низкие концентрации микроэлементов.

Уровень содержания элементов в печени красноперок из рек Артемовка и Раздольная различен, что может свидетельствовать о специфике экологической ситуации в реках.

Содержание токсичных элементов в тканях рыб не превышало ПДУ.

Авторы выражают благодарность канд. биол. наук Н.В. Колпакову, канд. биол. наук В.А. Надточеву за планирование, организацию и проведение экспедиционных работ, постоянный интерес к результатам оценки экологического состояния рек и промысловых гидробионтов. Выполнение этого исследования было бы невозможно без их усилий и творческого участия.

Список литературы

СанПиН 2.3.2.1078–01 Гигиенические требования безопасности и пищевой ценности пищевых продуктов. — М. : Госкомсанэпиднадзор России, 2002. — 156 с.

